Upper Mississippi River Basin

Nutrient Management Activities

June 2003

Percentage of Wetland Losses in the Upper Mississippi River Basin States: 1780's to 1980's *

States

* Dahl. T.E. 1990 Wetlands Losses in the United States 1780's to 1980's.
U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C.,p6.

Grassland Losses

	Historic Acreage (ha)	Current Acreage (ha)	Decline
Illinois	8,900,000	900	99.9%
Indiana	2,800,000	404	99.9%
lowa	12,500,000	12,140	99.9%
Kansas	6,900,000	1,200,000	82.6%
Minnesota	7,300,000	30,350	99.6%
Missouri	5,700,000	30,350	99.5%

Root Systems of Prairie Plants

Upper Mississippi River Basin Current Landuses

 Agriculture 	67%
· Idle Agriculture	4%
• Urban	3%
 Forestry 	9%
 Federal 	12%
 Other 	5%

Longitudinal Changes in Mississippi River Floodplain Structure

Robert L. Delaney¹ and Mary R. Craig²

Figure 1. Mississippi River Segments

Table 1. Mississippi River Floodplain

River Segment	Approximate Floodplain Acres in 1,000s	Percent of Floodplain Behind Levees
Headwaters	328	<0.01%
Upper Mississippi (N)	496	3%
Upper Mississippi (S)	1,006	53%
Middle Mississippi	663	82%
Lower Mississippi	25,000	93%
Deltaic Plain	3,000	96%
TOTALS	30,493	90%

Habitat Alteration

River Segment	Floodplain Acreage (1000's)	% of Floodplain Behind Levees
Upper Mississippi (N)	496	3%
Upper Mississippi (S)	1,006	53%
Middle Mississippi	663	82%
Lower Mississippi	25,000	93%
Deltaic Plain	3,000	96%
Totals	30,493	90%

Ecological values of annual floodpulse

After a century of human alteration:

Post-dam: "chaos"

1930, Before Flooding

Terrestrial

Aquatic Vegetation

Open Water

1938

Aquatic Vegetation

Open Water

1965

- Terrestrial
- Aquatic Vegetation
- Open Water

1975

- Terrestrial
- Aquatic Vegetation
- Open Water

1993

- Terrestrial
- Aquatic Vegetation
- Open Water

OVERVIEW

Terrestrial
Aquatic Vegetation
Open Water

OVERVIEW

Terrestrial
Aquatic Vegetation
Open Water

Weaver Bottoms - 1950s

Weaver Bottoms - Current

US EPA'S Role

- Aiding in the identification of environmental problems
- Working in watersheds
- · Supporting the State's efforts

Aiding in the Identification of Environmental Problems

- Upper Mississippi River Data Base
- Fate and Transport Studies
- Further Watershed Analyses
- Pilot Projects
- Benefits of Existing Projects

Pilot Projects

- Upper Halfway Creek (paired watershed)
- Wisconsin River Watershed (nutrient trading)
 - Baraboo River

Existing Projects

- Environmental Management Program (Water Resources Development Act 1986)
- · CREP, USDA
 - Minnesota River, MN
 - Illinois River, IL
 - Raccoon River, IA
- The Nature Conservancy Project
 - Spunky Bottoms
 - Emiquon
- Nutrient Farming
 - Hennipin Flood Control District

